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Abstract
An analysis of CPN models is given in terms of general coordinates or arbitrary
interpolating fields. Only closed expressions made from simple functions are
involved. Special attention is given to CP2 and CP4. In the first of these the
retrieval of stereographic coordinates reveals the Hermitian form of the metric.
A similar analysis for the latter case allows comparison with the Fubini–Study
metric.

PACS numbers: 11.10 Lm, 11.25.-W, 11.30. Pb, 11.30. Rd

1. Introduction

Despite the central importance of CPN models [1], and their recent revival as arising
in supersymmetric form from minimized linear models [2] following the revision of the
underlying supersymmetry algebra of densities to include central terms, there appears to be
no treatment of them in general coordinates which would allow arbitrary field redefinitions
for the interpolating Goldstone bosons. In this paper just such an analysis is presented. The
next section explains how this is achieved by embedding the necessary structure into a more
complicated one. Strangely, perhaps, nothing is needed but simple functions, and a completely
general solution is found in closed form. In the following section the special case of CP2 and
stereographic coordinates is presented. Then the corresponding step is made for CP4 allowing
the connection to the Fubini–Study metric. Finally, there are brief conclusions and suggestions
are made for future work.

2. General framework

Curiously this section begins by consideration of the embedding of the structure needed for
the current problem into that of a larger system which has previously been solved in general
coordinates leading to a closed form involving only simple functions [3]. The embedding is
unique. Thus the starting point is a review of this established larger system and its solution, in
which the liberty of changing notation (slightly) for convenience has been taken.
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Consider then the Lie algebra of SUn specified by taking as a basis the set of (n2 − 1)
traceless Hermitian n× n matrices λi with the product law

λiλj = 2

n
δij + (dijk + ifijk)λk (1)

as specified by Gell-Mann and Ne’eman [4]. When specific values of the structure constants
fijk , or the symmetric dijk tensors or the λi matrices themselves are needed then the notation
of [4] will be assumed. An element of the group SUn, g(θ) is specified in exponential form
by a set of (n2 − 1) real parameters θi , so that in infinitesimal form the transformations

qA −→ qA − i

2
θ i(λi)ABqB (2)

and

Mi −→ Mi + θkfikjMk (3)

specify the behaviour of the basic spinor qA (quark) and adjoint vector Mi fields. Now define
a traceless matrix M by

MKL = Mi(λi)KL (4)

so that

Mi = 1
2 Tr(Mλi) (5)

then a group element g(θ) which induces a unitary transformation

qA −→ U(θ)ABqB (6)

on the basic spinors clearly induces an orthogonal transformation

Mi −→ RijMj = 1
2 Tr(U−1λiUλj )Mj (7)

on the adjoint representation.
The algebra of SUn × SUn is spanned by two sets of (n2 − 1) orthogonal elements Li and

Ri satisfying the commutation relations

[Li, Lj ] = ifijkLk (8)

[Ri, Rj ] = ifijkRk (9)

[Li, Rj ] = 0 (10)

and the linear combinations

Vi = Li + Ri (11)

Ai = Li − Ri (12)

are frequently used. Obviously the Vi generate a SUn subgroup which is parity conserving.
An element of the SUn × SUn group may be specified by two sets of (n2 − 1) real parameters,
and the alternative expressions

g = exp(−i[θVi Vi + θAi Ai]) (13)

and

g = exp(−iθLi Li) exp(−iθRi Ri) (14)

will prove useful with

θLi = θVi + θAi (15)

θRi = θVi − θAi (16)
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specifying the correspondence. Every element of the group can also be decomposed into a
product of the form

g = exp(−iφiA
i) exp(−iθiV

i) (17)

which is unique in a neighbourhood of the identity element and this will play a crucial role in
the general nonlinear realization scheme. The linear transformation laws are best specified by
giving the quarks a Dirac spinor index in the usual manner and taking

q −→ q − i

2
θLi λi

(1 + γ5)

2
q − i

2
θRi λ

i (1 − γ5)

2
q (18)

as the concrete infinitesimal form.
Since the matrices

PL = (1 + γ5)

2
(19)

and

PR = (1 − γ5)

2
(20)

act as a standard set of projection operators, the treatment of linearly transforming multiplets
of SUn × SUn now follows trivially.

To treat the nonlinear realizations of SUn × SUn in full generality the (n2 − 1) Hermitian
components Mi of the adjoint vector of SUn must be considered in more detail. In the
terminology of Michel and Radicati [5], the vector is said to be generic (or to belong to
the generic stratum) if all eigenvalues of M are distinct. For the generic case the minimal
polynomial for the matrix is the characteristic polynomial satisfying the equation

n∏
A=1

(M −mA) = 0 (21)

where the mA are the eigenvalues which satisfy
n∑

A=1

mA = 0 (22)

if the matrix is traceless. Thus the (n − 1) vectors with components given by powers of the
matrix in the form

Mα
i = 1

2 Tr([M]αλi) [α = 1, 2, . . . , (n− 1)] (23)

are a linearly independent set, and the quantities

SA = Tr([M]A) =
n∑

B=1

[mB]A ≡
n∑

B=1

mAB (24)

are (n − 1) independent SUn invariants (S1 is identically zero). At once it is clear that the
general vector which can be constructed from the Mi has the form

ξi = FαMαi (25)

where the Fα are functions of the (n − 1) independent SUn invariants. This freedom has
been discussed at length by Gasiorowicz and Geffen [6]. From the point of view of field
theory it corresponds to freedom of choice of interpolating fields. Provided that F1(0) is
taken to be unity, and parity is respected, then all ξi so defined are equally good interpolating
fields. From a geometrical viewpoint the ξi may be regarded as coordinates of points of the
(n2 −1)-dimensional coset space manifold formed by the quotient of SUn×SUn by the vector
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SUn subgroup. The freedom is then viewed as the ability to change coordinates within a local
patch near the origin.

An arbitrary point on the manifold is parameterized by

exp(−iξiAi) ≡ L(M) ≡ exp

(−iθ

2φ
Miλi[PL − PR]

)
(26)

where the first form corresponds with equation (17) and the second form represents the
appropriate expression when equation (25) has been used so that the Mi are regarded as the
coordinates, and φ2 = MiMi .

The general theory is well described by Coleman et al [7] and Callan et al [8], and the
geometrical approach by Isham [9]. With the decomposition given in equation (17) the action
of a general element g of the full group may be written as

g exp(−iξiAi) = exp(−iξ ′
iAi) exp(−iηiVi) (27)

≡ L(M ′) exp(−iηiVi) (28)

where M ′
i and ηi both depend on Mi and g. Then the primary result of the general theory is

that

g : Mi −→ M ′
i (29)

gives a nonlinear realization of the algebra which is linear on the SUn vector subgroup.
Moreover if h is an element of the vector subgroup and

h : #$ −→ D(h)$&#& (30)

is a linear (unitary) representation of that subgroup, then

g : #$ −→ D[exp(−iηiVi)]$&#& (31)

gives a realization of the full group. Notice that this latter transformation is linear in # but
nonlinear (through ηi) in the Mi when g is not in the vector subgroup. Fields which transform
according to equation (31) are called standard fields, and it is important to understand that by a
suitable redefinition of coordinates any nonlinear realization of SUn × SUn which is linear on
the vector subgroup can be brought into this standard form. In practice the most useful result
is that, if one has a linear irreducible (unitary) representation of SUn × SUn such that

g : N$ −→ D[g]$&N& (32)

then

#$(M) = D[L−1(M)]$&N& (33)

transform as the components of standard fields.
It is now clear that there are just three classes of fields to consider:

(1) Linear representations which may be built up in the usual way as multispinors with
transformation laws defined by equation (18). These will not be treated in more detail.

(2) Vectors Mi transforming as the adjoint representation of SUn with a nonlinear
transformation law under chiral action specified by equation (27). These will allow
a description of the massless Goldstone bosons (pions etc) corresponding to the axial
degrees of freedom spontaneously violated. The specification of invariants constructed
(nonlinearly) from these is most important and will be exhibited later.

(3) Standard fields which appear linearly in their transformation laws, but with nonlinear
functions of the Mi induced according to equations (31) and (28). These are important in
describing matter (e.g. nucleons) interacting with the Goldstone bosons as chiral matter.
Once more, the specification of the corresponding invariants is most important and will
be given later.
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The technical problem of finding the invariants is solved in [3]. A crucial step is the resolution
of the powers of the matrix M in the form

[M]A = [mB]APB ≡ mABPB (34)

where the PB are n Hermitian matrices, each n× n, with the properties

PAPB = δABPB (no sum) (35)

Tr(PA) = 1 (36)

and
n∑

A=1

PA = 1 (37)

where this 1 is the unit (n×n)matrix. Although the PA are not in general diagonal, the above
projection operator properties make calculations tractable. Now define

PAi = 1
2 Tr(PAλi) (38)

and

(PA)MN = PAi(λi)MN +
1

n
δMN (39)

where because the PA are complete it follows that
n∑

A=1

PAi = 0 (40)

and, introducing

pAi =
√

2[PAi − (1 +
√
n)−1]Pni (41)

with
√

2PAi = pAi +
1√
n
pni (42)

establishes that pµi for µ = 1, 2, . . . , (n− 1) are orthonormal.
The second-rank tensors defined by the Mi are conveniently handled by an extension of

these ideas, and fall into two classes. One such class is formed by the n(n − 1) independent
tensors defined by

(PAB)ij ≡ PAiBj ≡ 1
2 Tr(PAλiPBλj ) (A �= B) (43)

and

Iij = 1
2 Tr(PAλiPAλj ), (44)

which have the properties

II = I (45)

IPAB = 0 = PABI (46)

and

PABPCD = δACδBDPAB (no sum) (47)

in terms of the matrix notation of the last section. Moreover, these are all Hermitian matrices
and the trace of each PAB is unity. Since it is easy to show also that∑

A �=B

′
PAB = 1 − I (48)
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where the sum is over all A and B but excluding terms with A = B, this gives a projection
operator resolution in one sector of the space of these second-rank tensors and so I (with trace
[n−1]) will decompose further. The second class of tensors may be identified with the (n−1)2

independent matrices with components

(pαβ)ij ≡ pαipβj (49)

which span the subspace of (n2 − 1) × (n2 − 1) matrices projected out on multiplication by
I from both sides and which are therefore orthogonal to the subspace in which the PAB lie.
Since the pαi are orthonormal, the multiplication law for the pαβ is

pαβpγ δ = δβγ pαδ. (50)

It has been established by Barnes and Delbourgo [10] that all the independent second-rank
tensors which can be constructed from theMi are spanned by the (n− 1)(2n− 1) independent
pαβ and PAB .

The most general unitary unimodular matrix U constructed from the Mi may be written
in the form

U = UAPA = exp

[−i

2
θA

]
PA where

n∑
A=1

θA = 0 (51)

but the θA are otherwise completely arbitrary independent functions of the independent SUn
invariants SA subject to the considerations of parity and weak field limits as mentioned before.
These (n − 1) effective arbitrary functions of the (n − 1) invariants are characteristic of the
general solution and will persist throughout this work.

It has been conventional to define√
2φA = mA − (1 +

√
n)−1mn (52)

with

mA =
√

2(φA + n− 1
2φn) (53)

so that, extending the notation used previously,

Mi = φαpαi (54)

and

φα,i = pαi (55)

follow immediately. Similarly, defining
√

2ψA = θA − (1 + n
1
2 )−1θn (56)

with

θA =
√

2(ψA + n− 1
2ψn) (57)

the ψα may be treated as (n− 1) independent (arbitrary) functions of the φα which then serve
as the (n− 1) independent invariants.

The transformation laws for all realizations are now given in [3] in closed form and in
terms of simple functions. Restricting attention to first-order derivatives of the fields with
respect to space and time, and also restricting attention to a study of the Goldstone boson
fields Mi and the standard fields the results can be given in terms of the general analysis of [7]
and [8]. There are two important results. First, although ∂µMi and ∂µ#& do not transform as
standard fields, the covariant derivatives

DµMi = aµi (58)
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and

Dµ#& = ∂µ#& − iνµi(Ti)&$#$ (59)

where under SUn

#& −→ #& − iθi(Ti)&$#$ (60)

and where

L−1(M)∂µL(M) = exp(−ξiAi)∂µ exp(ξjAj ) = νiµVi + aiµAi (61)

have precisely this property. Secondly, they show that the most general Lagrangian of the type
under consideration may be written as a function of the standard fields #, Dµ# and DµMi

only; that is the Mi will not appear explicitly, and the Goldstone bosons will be massless. It
then follows that the Lagrangian so formed will be invariant under SUn × SUn if and only if
it is constructed to be invariant under the SUn vector subgroup. This latter requirement is, of
course, achieved by index saturation once more.

The result given in [3] (now dropping the chiral projectors and normalizing for this
problem) takes the concrete form

DµMi =
{
∂ψβ

∂φγ
(Pγβ)ik +

∑
A �=B

′
√

2

(φA − φB)
sin

[
ψA − ψB√

2

]
(PAB + PBA)ik

}
(∂µMk) (62)

and represents a complete specification of the required Lagrangian in simple closed form.
Using the geometric formulation of Isham [9] gives the coset space metric in the form related
to the covariant derivatives as

gij (∂µMi)(∂
µMj) = (DµMi)(D

µMi) (63)

and we have normalized gij to δij in the limit of zero fields. In matrix notation this yields

g = 1

4

{
pβλ

∂ψα

∂φβ

∂ψα

∂φλ
+

∑
A �=B

′ 2

(φA − φB)2
(PAB + PBA) sin2

[
ψA − ψB√

2

]}
(64)

immediately because of the orthonormality.
At last it is time to see how this structure is related to CPn. Returning to the SUn × SUn

action given in equations (27) and (28), consider the restriction of ξi to the subset of dimension
2(n− 1) given by

A(n−1)2 , A(n−1)2+1, . . . , An2−2 (65)

and similarly the restriction of Vi to the subset of dimension (n− 1)2 given by

V1, V2, . . . , V(n−1)2−1 = Vn(n−2) and Vn2−1 = V(n+1)(n+1−2) (66)

the restrictions are overall obviously unique. The remaining Vi after the restriction clearly
generate SUn−1 × U1, and the remaining Ai combine with the Vi to yield the whole SUn in
which the former are uniquely embedded. This gives the manifold SUn/(SUn−1 ×U1) which
is of dimension 2(n − 1) and forms the basis for CP2(n − 1). All the previous results now
apply to this embedded space simply by applying the same restrictions.

It is still necessary to interpret the information thus obtained in terms of the CPn structure.
From this viewpoint the V1, V2, . . . , Vn2−1 and Vn(n+2) generate an SUn−1 × U1 under which
the Aµ transform linearly as a complex 2(n− 1) dimensional multiplet.
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Recall that the 2(n − 1)ξi are the generalized coordinates or interpolating fields for the
massless Goldstone bosons. We can combine these into (n−1) complex coordinates by taking

z0 = ξ0 − iξ1, z1 = ξ2 − iξ3, . . . , zn−2 = ξ2(n−1) − iξ2(n−1)+1

by a judicious choice of labels.
We can see that with the new labels then

M =
n−2∑
µ=0

[
zµ

[λ2µ+(n−1)2 + iλ2µ+(n−1)2+1]

2
+ z̄µ

[λ2µ+(n−1)2 − iλ2µ+(n−1)2+1]

2

]

having only non-zero entries going from z0 to zn−2 down the final right-hand column from the
top, and going from z̄0 to z̄n−2 across the final row from the left. There are zeros in the top
(n − 3) × (n − 3) left-hand block, and a zero in the bottom right-hand corner. Each of the
complex z’s gives two vectors in the coset space. The corresponding lengths can be expressed
in terms of the independent (n−2) invariants φα out of which the (n−2) independent functions
θα (used in constructing the z’s) are formed.

3. The special cases of CP2 and CP4

The CP2 case has previously been called the chiral 2-sphere by Barnes et al [11] when it has
been described in some detail. In the present notation M takes the form

M = 1
2 (z + z̄)σ1 + 1

2 i(z− z̄)σ2 = MAσA (67)

where z0 is written as z and where φ2 = zz̄, and writing MA = φnA gives

(P12 + P21)AB = δAB − nAnB. (68)

Thus putting

ψ1 − ψ2 =
√

2θ (69)

and

φ1 − φ2 =
√

2φ (70)

one finds immediately that

gAB = 1

4

[(
dθ

dφ

)2

nAnB +
sin2 θ

φ2
(δAB − nAnB)

]
. (71)

Note that in this example where there is only a single arbitrary function θ of a single invariantφ,
the notation of the δSU2 description does not need adapting for the SU2/U1 coset space.

The condition to find the Hermitian form is obviously(
dθ

dφ

)2

= sin2 θ

φ2
(72)

with the solution

φ = c tan

(
θ

2

)
(73)

where c is a constant, being the one conventionally chosen. This is the coordinate system
usually known as stereographic. Obviously equation (71) now yields

gAB = δAB

[1 + zz̄]
(74)
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where

z0 = M1 + iM2 when c = 1 (75)

and hence it follows that

L2 = 1

2
gAB(∂µMA)(∂

µMB) = 1

[1 + z0z̄0]

(∂µz0)(∂
µz̄0)

2
(76)

in obvious Hermitian form in these stereographic coordinates, and sometimes this is written
as

L2 = (∂µξ)(∂
µξ̄ )

2[r2 + ξ ξ̄ ]
(77)

where rz0 = ξ is used to emphasize the constant radius r of the 2-sphere.
The CP4 case has

M = Mµλµ = (z0 + z̄0)

2
λ4 + i

(z0 − z̄0)

2
λ5 +

(z1 + z̄1)

2
λ6 + i

(z1 − z̄1)

2
λ7. (78)

This is perhaps a suitable place to note that if the functions z0 and z1 are not chosen carefully
then M will not be generic and the degree of the equation satisfied by it will be less than the
maximum.

The Goldstones bosons of this scheme are the octet of pseudo scalar mesons described by
theMi . In general there are two SU3 invariants which may be constructed from theMi . These
can be denoted

X = MiMi (79)

and

Y = dijkM
iMjMk (80)

where the determinantal inequality

3Y 2 � X3 (81)

ensures that the norm of an arbitrary vector constructed from the Mi shall be positive definite.
Now define φ and δ by

φ = X
1
2 (82)

and

φ3 sin δ =
√

3Y (83)

as the basic invariants.
It is straightforward to show [12] that, if

Ni = dijkM
jMk (84)

then

m̂i = φ−1Mi (85)

and

r̂i = φ−2 sec δ(
√

3Ni − φMi sin δ) (86)

are an orthonormal base for the independent vectors.
It has also been shown that the vectors

qi = r̂i cosα + m̂i sin α (87)
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and

si = (−)r̂i sin α + m̂i cosα (88)

with

3α = δ − 2Aπ (A = 1, 2, 3) (89)

are respectively charge and special vectors in the sense of Michel and Radicati [5]. Apart from
their orthonormality these vectors also have the properties

(−)
√

3dijkq
jqk = qi =

√
3dijks

j sk (90)√
3dijks

j qk = si (91)

and

fijks
j qk = 0 (92)

so that a single pair qi and si represent a useful alternative to working with the three PA
i which

are linearly dependent. Adopting the choice A = 3 for the set of standard qi and si it follows
that √

2pi1 = qi + si (93)

and √
2pi2 = qi − si (94)

are the orthonormal basis vectors introduced previously.
The second rank tensors which may be constructed from the Mi are spanned by the six

projection operators (PAB)ij and the four (pαβ)ij , all of which are taken to be Hermitian in the
matrix sense.

It is standard to introduce projection operators with a cyclic notation in the form

(S1)ij = (P23)ij + (P32)ij (95)

(S2)ij = (P13)ij + (P31)ij (96)

(S3)ij = (P12)ij + (P21)ij . (97)

The first term in equation (64) can be treated by making the substitutions (where lower and
upper Greek indices take the ranges 4–5 and 6–7 respectively)

p
µ

1 ⇒ n
µ

1 , p&2 ⇒ n&2 (98)

∂ψβ

∂µφ1
⇒

√
2
∂ψβ

∂µω1
=

√
2
∂ψβ

∂ω1

∂ω1

∂Mµ

=
√

2
∂ψβ

∂ω1

Mµ

ω1
(99)

∂ψβ

∂&φ2
⇒

√
2
∂ψβ

∂&ω2
=

√
2
∂ψβ

∂ω2

∂ω2

∂M&

=
√

2
∂ψβ

∂ω2

M&

ω2
(100)

and similarly, using equations (95)–(97), the SA can be brought to the forms

(S1)µν = δµν − n′
µn

′
ν (101)

(S2)&$ = δ&$ − n2
&n

2
$ (102)

and S3 vanishes because n3 lies inside the SU2 × U1 subspace rather than in the coset space.
(This explains why the range of summation is reduced in future.)

It follows that

4gµν = 2
∂ψβ

∂ω1

∂ψβ

∂ω1

MµMν

(ω1)2
+

4(S1)µν

(ω1)2
sin2

(
θ1 + 2θ2

2

)
(103)

4g&$ = 2
∂ψβ

∂ω2

∂ψβ

∂ω2

M&M$

(ω1)2
+

4(S2)&$

(ω2)2
sin2

(
θ2 − 2θ1

2

)
(104)
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and

4gµ$ = 2
∂ψβ

∂ω1

∂ψβ

∂ω2

MµM$

ω1ω2
(105)

Noting thatMµ ≡ ω1n
1
µ, it appears that the hermiticity conditions on the diagonal components

are
∂ψβ

∂ω1

∂ψβ

∂ω1
= 2

(ω1)2
sin2

(
θ1 + 2θ2

2

)
(106)

and
∂ψβ

∂ω2

∂ψβ

∂ω2
= 2

(ω2)2
sin2

(
θ2 − 2θ1

2

)
. (107)

These conditions can be imposed by a slight generalization of the method used in the CP2
case. Obviously it will be advantageous to introduce the abbreviations

D = ∂ψ1

∂ω1
, D′ = ∂ψ2

∂ω1
, d = ∂ψ1

∂ω2
and d ′ = ∂ψ2

∂ω2
(108)

It is simple to see that from equations (106) and (107) it follows that

D2 + D′2 = 2

(ω1)2
sin2

[
θ1 + 2θ2

2

]
(109)

and

d2 + d ′2 = 2

(ω2)2
sin2

[
θ2 − 2θ1

2

]
. (110)

These two results ensure the hermiticity constraints on gµν and g&$, which then take forms

4gµν = 1

(ω1)2
δµν sin2

(
θ1 + 2θ2

2

)
(111)

and

4g&$ = 1

(ω2)2
δ&$ sin2

(
θ2 − 2θ1

2

)
(112)

where the normalization has again been adjusted. The other components take the forms

4gµ$ = (Dd + D′d ′)
n1
µn

2
$

2
(113)

and

4g&ν = (Dd + D′d ′)
n1
νn

2
&

2
(114)

and as these are off diagonal it is necessary to show hermiticity makes them zero.
Now put

ω1 = [c2 + (ω2)
2]

1
2 tan

(
θ1 + 2θ2

4

)
(115)

to show that

∂
(
θ1+2θ2

2

)
∂ω1

= sin
(
θ1+2θ2

2

)
ω1

= 2[c2 + (ω2)
2]

1
2

[c2 + (ω1)2 + (ω2)2]
. (116)

Similarly, put

ω2 = [c′2 + (ω1)
2]

1
2 tan

(
θ2 − 2θ1

4

)
(117)
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to show that

∂
(
θ2−2θ1

2

)
∂ω2

= sin
(
θ2−2θ1

2

)
ω2

= 2[c′2 + (ω1)
2]

1
2

[c′2 + (ω1)2 + (ω2)2]
. (118)

It is straightforward to see from equations (106) and (107) that(
∂θ1

∂ω1

)2

+

(
∂θ1

∂ω1

) (
∂θ2

∂ω1

)
+

(
∂θ2

∂ω1

)2

= 1

(ω1)2
sin2

(
θ1 + 2θ2

2

)
(119)

and (
∂θ1

∂ω2

)2

+

(
∂θ1

∂ω2

) (
∂θ2

∂ω2

)
+

(
∂θ2

∂ω2

)2

= 1

(ω2)2
sin2

(
θ2 − 2θ1

2

)
(120)

so that, using the left-hand parts of equations (116) and (118), it follows that

c′ = (±)c (121)

is required since the c and c′ are constants independent of the ω1 and ω2 variables, and the
expressions on the right-hand sides result simply from using a trigonometric substitution to
evaluate the integral. Hence, the forms

gµν = δµν[c2 + (ω2)
2]

[c2 + (ω1)2 + (ω2)2]2
(122)

and

g&$ = δ&$[c2 + (ω1)
2]

[c2 + (ω1)2 + (ω2)2]2
(123)

are revealed.
Now consider

D2 + D′2 = d2 + d ′2 (124)

which follows from equations (109) and (110) by using the left-hand parts of equations (116)
and (118), now that c′ = (±)c, reveals that

dD + d′D′ = 0. (125)

From equations (113) and (114), it is now evident that

gµ$ = 0 = g&ν (126)

and this completes the specification of the metric through the hermiticity conditions. It is
perhaps worth repeating that the forms of the metric (given for example in equations (103)
and (104)) are in general coordinates before the hermiticity conditions are applied. However,
the forms given in equations (122) and (123) are in Hermitian form and may be directly
compared with the classic results of Fubini [13] and Study [14]. These authors apply scaling
by using the conformal symmetry of the metric, and this is directly equivalent to setting c = 1
in the present notation. Reverting to complex notation reveals the invariant

L4 = dz1 dz̄1[1 + z2z̄2] + dz2 dz̄2 [1 + z1z̄1]

[1 + z1z̄1 + z2z̄2]2
(127)

retrieving the Fubini–Study form.

4. Conclusions

It appears that the CPN metric has been found in general coordinates (in principle) for all N ,
and that in the cases of N = 2 and 4 well known forms are recovered in the Hermitian limit.
Obviously, the algebraic effort required does rise withN but only simple functions ever appear.
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